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We study the paramagnetic Anderson-Hubbard model using an extension of dynamical mean field theory
�DMFT�, known as statistical DMFT, that allows us to treat disorder and strong electronic correlations on equal
footing. An approximate nonlocal Green’s function is found for individual disorder realizations and then
configuration averaged. We apply this method to two-dimensional lattices with up to 1000 sites in the strong
disorder limit, where an atomic-limit approximation is made for the self-energy. We investigate the scaling of
the inverse participation ratio at quarter- and half-filling, and find a nonmonotonic dependence of the local-
ization length on the interaction strength. For strong disorder, we do not find evidence for an insulator-metal
transition, and the disorder potential becomes unscreened near the Mott transition. Furthermore, strong corre-
lations suppress the Altshuler-Aronov density of states anomaly near half-filling.
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I. INTRODUCTION

The physical properties of interacting disordered materials
are often qualitatively different from their noninteracting
counterparts. For example, it has long been known that non-
interacting quasiparticles in two-dimensional �2D� materials
are localized by arbitrarily weak disorder; however, there is
evidence that interactions can drive an insulator-metal tran-
sition in 2D.1 Similarly, there is a growing awareness that
disorder can fundamentally alter the physical properties of
interacting systems. This arises in a number of transition-
metal oxides,2–5 where the predominantly d-orbital character
of the conduction electrons results in a large intraorbital �on-
site� Coulomb interaction relative to the bandwidth. These
materials are of interest because they have an interaction-
driven insulating �Mott-insulating� phase and because of the
variety of exotic phases, such as high temperature supercon-
ductivity, which appear near half-filling. However, transition-
metal oxides are typically doped by chemical substitution
and, with few exceptions, are intrinsically disordered. At
present, there is little consensus on the effects of this disor-
der, particularly near the transition to the Mott-insulating
phase.

Here, we discuss the effects of strong electronic correla-
tions on disordered 2D materials via a numerical study of the
Anderson-Hubbard model,

Ĥ = − t�
�i,j�

�
�

ci�
† cj� + �

i

�Un̂i↑n̂i↓ + �in̂i� , �1�

where �i , j� refers to nearest-neighbor lattice sites i and j;
�= ↑ ,↓ is the spin index; and n̂i= n̂i↑+ n̂i↓, where n̂i�=ci�

† ci�
is the local charge-density operator. The model has four pa-
rameters: the kinetic energy t, the intraorbital Coulomb in-
teraction U, the width W of the disorder-potential distribu-
tion, and the chemical potential �. Disorder is introduced
through randomly chosen site energies �i, which in this work
are box distributed according to P��i�=W−1��W /2− ��i��.

For U=0, it is well understood that the single-particle
eigenstates of Eq. �1� are Anderson localized for W�Wc,
where Wc is the critical disorder and Wc=0 in two and fewer

dimensions. For W=0, and at half-filling �i.e., n=1, where n
is the charge density�, there is a critical interaction strength
Uc such that the model is a gapped Mott insulator for
U�Uc and �neglecting possible broken-symmetry phases� a
strongly correlated metal for U�Uc or for n�1. There is
evidence that the Mott transition is fundamentally different
in the presence of disorder. For example, some work have
shown that Uc=0 in clean low-dimensional systems with
nested Fermi surfaces,6–9 while in the disordered case, Uc is
not only nonzero, but rapidly becomes of the order of the
bandwidth as a function of W.9–11 In fact, it has become clear
through numerous studies that the general U-W-n phase dia-
gram is complicated and also potentially contains supercon-
ducting, antiferromagnetic, and spin glass phases.11–14 Much
of the recent progress has been for infinite-dimensional
systems,14–21 and the applicability of this work to two and
three dimensions is not well established. A recent focus has
been the extent to which interactions screen the disorder
potential19,21–23 and whether screening may lead to an
insulator-metal transition.12,22–24 In particular, some calcula-
tions show perfect screening near the Mott transition.19,21

Part of the confusion surrounding the Anderson-Hubbard
phase diagram stems from the variety of theoretical ap-
proaches that have been applied. Self-consistent Hartree-
Fock �HF� calculations11–13 treat the disorder potential ex-
actly, but do not capture the strong-correlation physics of the
Mott transition. Dynamical mean field theory �DMFT� ap-
proaches contain the necessary strong-correlation physics,
but are based on a local approximation that generally pre-
cludes exact treatment of disorder. A variety of coherent po-
tential approximation �CPA� and CPA-like approximations
have been employed in conjunction with DMFT.14–20 While
the CPA reproduces some disorder-averaged quantities accu-
rately, e.g., the density of states �DOS� in the noninteracting
limit, it fails to reproduce quantities that depend on explicit
knowledge of spatial correlations between lattice sites. As a
notable example, the CPA fails to predict the Altshuler-
Aronov DOS anomaly which appears at the Fermi energy in
disordered metals.25 Quantum Monte Carlo22,23 and exact
diagonalization24 �ED� methods treat both disorder and inter-
actions exactly, but suffer from severe finite-size limitations,
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typically generate only equal-time correlations, and �in the
case of quantum Monte Carlo� suffer from the fermion sign
problem.

In this work, we use an extension of DMFT, known as
statistical DMFT,26 that incorporates both strong correlations
and an exact treatment of the disorder potential. By varying
U for a fixed disorder strength, we are able to move
smoothly from the well-understood weakly correlated regime
into the unknown territory of strongly correlated disordered
systems. Because our approach retains spatial correlations
between the local self-energy at different lattice sites, but can
also be applied to reasonably large lattices in finite dimen-
sions, it provides a bridge between the various methods de-
scribed above. Up to now, statistical DMFT has been applied
only on a Bethe lattice. Here, we work with a two-
dimensional square lattice and present results for the density
of states, scaling of the inverse participation ratio, and the
screened potential.

II. METHOD

We focus on paramagnetic solutions on the 2D square
lattice, for which the noninteracting bandwidth is D=8t. On
an N-site lattice, the single-particle Green’s function can be
expressed as an N�N matrix in the site index:

G�	� = �	I − t − � − ��	��−1, �2�

with I the identity matrix, t the matrix of hopping ampli-
tudes, � the diagonal matrix of site energies �i, and ��	� the
matrix of self-energies. The matrix t has nonzero matrix el-
ements tij =−t for i and j corresponding to nearest-neighbor
sites. We assume that ��	� is local, having only diagonal
matrix elements 
i�	�.

The iteration cycle begins with the calculation of G�	�
from Eq. �2�. For each site i, one defines a Weiss mean field
Gi

0�	�= �Gii�	�−1+
i�	��−1, where Gij�	� are the matrix el-
ements of G�	�. As in the conventional DMFT, one then
solves for the full Green’s function Gi�	� of an Anderson
impurity whose noninteracting Green’s function is Gi

0�	�.
The self-energy is then updated according to 
i

new�	�
=Gi

0�	�−1−Gi�	�−1, and the iteration cycle is restarted. In the
disorder-free case, this algorithm reduces to the conventional
DMFT.

We have used the Hubbard-I �HI� approximation as a
solver for Gi�	�, for which, in the paramagnetic case,
Gi�	�= �Gi

0�	�−1−
i
HI�	��−1, where


i
HI�	� = U

ni

2
+

U2ni

2
	1 −

ni

2



	 − �i − U	1 −
ni

2

 , �3�

and ni��n̂i� is self-consistently determined for each site. The
HI approximation is the simplest improvement over HF that
generates both upper and lower Hubbard bands. When either
the HF or HI approximations are used as a solver, the DMFT
result is, in fact, equivalent to the result obtained directly
from the corresponding approximation. However, the

statistical-DMFT procedure outlined above, applied to a
physical lattice, and hence implemented through a matrix
inversion �Eq. �2��, is very computationally intensive. In par-
ticular, it can be difficult to achieve a converged self-
consistent solution to the N coupled equations for 
i�	�.
This work, aside from being a simple improvement beyond
HF, represents an important proof of principle regarding the
feasibility of this statistical DMFT approach.

The fact that we are studying disordered systems bears on
two important and related issues: �i� the accuracy of the HI
approximation and �ii� the validity of single-site �as opposed
to cluster or cellular� DMFT in a finite-dimensional system.
The strengths and weaknesses of the HI approximation are
well documented in the clean limit: it is exact in the atomic
limit �U / t�1�, but is nonconserving and fails to satisfy Lut-
tinger’s theorem.27 However, it is uniquely effective in low-
dimensional disordered systems because W / t�1 corre-
sponds to the atomic limit for arbitrary U in systems with
finite coordination number. This is in apparent contradiction
to the general result that DMFT is only exact in infinite di-
mensions, while nonlocal terms in the self-energy, neglected
in DMFT, can have a dramatic effect on the Mott transition
in 2D.28,29 In the disordered case, however, we have com-
pared our results with ED studies on small clusters30 and
have found qualitative agreement for W=12t �i.e., W=1.5D�,
which is the focus of the current work. By pushing the sys-
tem toward the atomic limit, strong disorder both enhances
the accuracy of the HI approximation and also reduces the
importance of nonlocal terms in the self-energy.

III. RESULTS

The local density of states �LDOS� is extracted from the
Green’s function as ��ri ,	�=−
−1 Im Gii�	� and the DOS is
��	�=N−1�i��ri ,	�. Figures 1�a�–1�c� show the evolution of
the DOS as a function of U for fixed W at half-filling. There
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FIG. 1. �Color online� Density of states. �a�–�c� Total DOS for
W=12t, n=1, and different U. Results have been averaged over
1000 samples and are for an N=20�20 site square lattice. ED
results, averaged over 10000 samples, for a four-site lattice �red� are
also shown in �c�. �d� DOS for n=0.5. Also shown �e�–�g� is the
LDOS for three arbitrarily chosen sites �site energies indicated in
the figure�. �e� is for the same parameters as �a�, �f� as �b�, etc.
Energies are in units of t.
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is a transition from a single band to a gapped Mott-insulating
state at a critical interaction Uc�12.5t. In contrast, the
LDOS �Figs. 1�e�–1�g�� develops a local Mott gap at much
smaller values of U. We note that, at most sites, the nonin-
teracting LDOS has a single strong resonance near the bare
site energy �Fig. 1�e��, indicating proximity to the atomic
limit where HI becomes exact. The coordination number of
the lattice determines the disorder strength required to ap-
proach the atomic limit. In lattices with infinite coordination
number, each site couples to a continuum of states and the
atomic limit is never reached for finite W. Thus, somewhat
paradoxically, DMFT with the HI solver works best, in dis-
ordered systems, for lattices with low coordination number.

It is useful to compare the DOS evolution in Fig. 1 with
existing published work. First, we note that the Mott transi-
tion occurs at Uc�W in both our DMFT and ED calcula-
tions. This is consistent with quantum Monte Carlo results
for three dimensions,9 as well as infinite-dimensional DMFT
results,15 but Uc is somewhat larger than found in one
dimension.10 Our Uc is also significantly larger than in unre-
stricted HF calculations for three dimensions;11 however, in
HF calculations, the metal-insulator transition is of the Slater
type and could, therefore, be expected to respond differently
to disorder.

Previously published results for the DOS near the Mott
transition in the large-disorder limit, to our knowledge, are
for infinite dimensions where CPA-like approximations can
be made. The main distinction between our results and those
for infinite dimensions is the quasiparticle resonance due to
Kondo screening of the local moments that appears at the
Fermi energy for U
Uc in the latter case.15,18–20 �The peak
at 	=� for U=8t comes from the overlap of the lower and
upper Hubbard bands.� The HI solver cannot give such a
peak; however, ED calculations for small clusters30 also find
no resonance at any U. In particular, Fig. 1�c� shows ED
results for parameters corresponding to a maximum quasi-
particle resonance height in Refs. 15 and 20. The difference
between our results and those for infinite dimensions might
seem unsurprising since there is also no resonance in the
clean limit in two dimensions.29 However, the reason for this
absence appears to be different in the clean and disordered
systems. The lack of a quasiparticle resonance in clean 2D
systems has been attributed to nonlocal terms in the
self-energy,29 terms which are not included in HI. These non-
local terms describe short-ranged antiferromagnetic correla-
tions whose effect is to suppress Uc to zero in the clean
limit.7,8,28 In our work, the absence of a quasiparticle peak
stems from the calculations being in the atomic limit. That
the same physics controls the ED results is supported by the
fact that Uc is nearly identical in HI and ED calculations. It,
therefore, appears as if the limitations of the HI solver do not
hide key physics in the large-disorder limit.

The DOS at quarter-filling Fig. 1�d� does have a peak at
the Fermi energy, but the origin of this peak is unrelated to
strong correlations. Paramagnetic HF calculations25 have
shown that nonlocal charge-density correlations lead to a
positive DOS anomaly at the Fermi level in disordered met-
als when the interaction is zero range and repulsive. This
Altshuler-Aronov DOS anomaly is absent at half-filling in
our calculations, in contradiction with the HF calculations,

indicating that strong correlations suppress the peak. We will
discuss this point below.

In Fig. 2, ��r ,�� is plotted for different values of U for a
particular disorder configuration. At U=0, sites which have
significant spectral weight at 	=� are typically isolated
from one another, consistent with electrons being Anderson-
localized. The LDOS is more homogeneous for U=8t than
for U=0, consistent with an interaction-driven delocalizing
effect. However, at U=12t, the LDOS is again highly inho-
mogeneous.

The inverse participation ratio �IPR�

I2�	,N� =

�
i=1

N

��ri,	�2

��
i=1

N

��ri,	��2
�4�

provides a quantitative measure of the inhomogeneity of
��r ,	�. The IPR can also be used to distinguish extended
and localized states since limN→�I2�	 ,N�=0 for the former
and is nonzero for the latter. It is important to note that the
frequency 	 used in the calculation of G�	� in Eq. �2� con-
tains, by necessity, a small imaginary component i�. Scaling
quantities such as the IPR that are derived from G�	� gen-
erally depend on �.31 In our scaling calculations, we have
taken ��1 /N such that the ratio of � to the level spacing
remains constant. As shown in Fig. 3�a� for the noninteract-
ing case, the effect of � is to reduce I2�	 ,N�, such that our
results represent a lower bound on the true ��=0� IPR. The
IPR scaling at half-filling is shown in Fig. 3�b� for 	=�. For
each value of U, we extrapolate a limiting value I2�� ,��. We
then define a localization length �= I2�� ,��−1/d, where d is
the dimension of the system.32 For finite �, I2�� ,��−1/d gives
an upper bound for �.

Figures 3�c� and 3�d� illustrate the effect of strong corre-
lations on localization. While the HI results agree closely
with self-consistent HF calculations for small U, the discrep-
ancy between the methods grows as U is increased. In the
weakly correlated small-U regime, � grows with U, consis-
tent with increased screening of the impurity potential.19,23

For large U, however, � is a decreasing function of U and is
smaller near the Mott transition than in the U=0 case. As we
discuss below, this can be partially attributed to a decrease in
screening due to strong correlations, although screening no

FIG. 2. �Color online� Local density of states for a single disor-
der realization at 	=� and W=12t, for �a� U=0, �b� U=8t, and �c�
U=12t for an N=32�32 site lattice and n=1.
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longer provides a complete framework for understanding the
evolution of �.

To understand better the localizing effect of strong corre-
lations, we define a screened potential19,20,23 Vi based on the
HF site energy: Vi=�i+U

ni−n
2 .23 Plots of both ni and Vi as a

function of �i are shown in Fig. 4. In the weakly correlated
limit �U= t�, ni is approximately linear in �i over a wide
range and Vi��i�1−U�ii� with �ii=−dni /d�i. Since �ii de-
pends only weakly on U, Vi is a decreasing function of U. In
the strongly correlated limit �U=8t�, ni is a nonlinear func-
tion of �i. For ��i��U /2, ni�1 and �ii=0, such that these
sites are unscreened �i.e., Vi=�i�. There are, therefore, two
limits in which screening is small at half-filling: U�W,
where the interaction is too weak to screen the impurity po-
tential, and U
W, where strong correlations enforce single
occupancy of most sites. We note that the absence of an
Altshuler-Aronov DOS anomaly near half-filling can be un-
derstood in this context: strong correlations suppress the lo-
cal response of the charge density to the impurity potential.

A measure of the screening is given by the relative vari-
ance �V2, defined as the variance of Vi divided by the vari-

ance of �i. Our numerical results �Fig. 4� show that �V2 is a
nonmonotonic function of U, obtaining a minimum at
U�W /2 and approaching �V2=1 for U→0 and U�W. At a
qualitative level, this is consistent with the nonmonotonic
dependence of � on U, since one expects � to be large when
�V2 is small. There are, however, quantitative discrepancies
which show that �V2 does not tell the whole story. First, �
does not obtain its maximum at U=W /2, where �V2 obtains
its minimum. Second, � is smaller at large U than at U=0,
indicating that states near the Mott transition are more
strongly localized than at U=0.

Our results for the IPR are consistent with recent quantum
Monte Carlo calculations of the dc conductivity24,23 which
find a similar nonmonotonic dependence on U. The results
for the screened potential, however, are inconsistent with
infinite-dimensional DMFT results.19,20 In Ref. 19, impurities
are found to be perfectly screened �i.e., �V2→0� at the Mott
transition, which would correspond to a divergent � in our
calculations. Near the Mott transition, Ref. 21 found that
sites with ��i��U /2 are perfectly screened. Both of these
results are opposite to what we have found here.

There are two important distinctions between our calcula-
tion and those of Refs. 19 and 21, both of which contribute
to these opposing results on screening. First, Refs. 19 and 21
use an effective medium approach for the disorder potential
that results in metallic behavior for small U. This is reason-
able in high dimensions where Anderson localization only
occurs for strong disorder. Our exact treatment of the disor-
der potential, on the other hand, allows us to describe the
Anderson localized phase that occurs in two dimensions for
small U. Whereas the LDOS is continuous and relatively
uniform in the metallic case, it is inhomogeneous and domi-
nated by small numbers of resonances in the Anderson insu-
lating phase �cf. Fig. 1�f��. The local charge susceptibility �ii
is suppressed for sites with small LDOS at the Fermi level,
and screening in the Anderson-insulating phase is conse-
quently expected to be less than in the metallic phase. The
second distinction is the quasiparticle resonance which arises
in the infinite-dimensional case but does not occur in our
calculations. This resonance is a key factor in the perfect
screening found in Refs. 19 and 21.

In conclusion, we have studied the 2D Anderson-Hubbard
model at half- and quarter-filling, in the limit of large disor-
der using statistical DMFT. We have calculated the localiza-
tion length � from the inverse participation ratio, and find
that it varies nonmonotonically with the strength of the in-
teraction: at small U, the interaction screens the impurity
potential, but at large U, strong correlations reduce the
screening. As a consequence, the Altshuler-Aronov DOS
anomaly is suppressed at half-filling. For strong disorder, we
find no evidence for an insulator-metal transition nor for en-
hanced screening near the Mott transition.
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